表1 れんがの化学組成分析結果

	未使用	使用後	
		稼働面側	背面側
LOI	0.09	0.06	0.13
SiO_2	82.9	81.5	83.1
Al_2O_3	15.5	15.0	15.1
Fe_2O_3	0.48	0.47	0.50
K_2O	0.21	0.98	0.23
Na ₂ O	0.14	0.94	0.17
MgO	0.12	0.83	0.15
Other	0.56	0.22	0.62

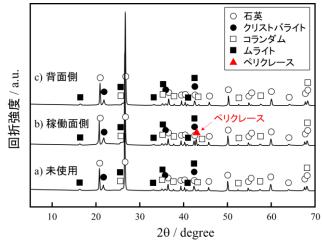


図5 れんがの粉末X線回折

XRFの結果と一致

 $XRF \cdots$ 稼働面側のみ外来成分の K_2O 、 Na_2O 、MgOが多く検出 $XRD \cdots$ 稼働面側のみMgOが同定され、

→2つの分析結果から、稼働面側は他とは 異なる反応が起きていると推測

No detect No detect 樹脂 Mg a)未使用 b)稼働面側 樹脂 40 detect K Mg c)背面側 図6 れんが表層におけるMg元素およびNa元素のマッピング像

EDS・・・稼働面側でMg成分の濃縮とK成分の内部拡散が確認 →外来成分(特にK成分)により、稼働面側の表層は緻密層を形成

稼働面では、外来成分による緻密層形成のため、 炭素沈積の原因となるCOガスの侵入が抑制された。 一方、背面側は緻密層が形成されず、 COと反応することでより組織脆化が促進した。